令和3年12月1日発行(毎月1回1日発行)通巻847号 昭和15年4月18日第3種郵便物認可 CODEN:KAKYAU ISSN 0451-1964

特別解説●Special reviews

ノーベル賞を読み解く

2021年 化学賞, 物理学賞, 生理学·医学賞

^{解説 ● Research article} ナノ材料を狙った位置へ正確に配置!

・ボンナノチューブなどの原子層からなる物質 は、原子レベルで構造を定めることができるナ ノ材料であり、究極のナノデバイスの構成要素として 電子や光子を操るポテンシャルを秘めている.これま で、その小ささと多彩な幾何構造がゆえに取扱いが難 しく、ナノ材料を「適材適所」に配置することが応用に 向けての課題であった.こうしたナノ材料を「見る」技 術とやさしく「運ぶ」技術を組み込んだ新たな手法によ り、原子レベルで構造の定まったナノ材料を高精度に 配置してナノデバイスを構築することが可能となった.

究極のナノ物質とは

デバイスの微細化は、とくに半導体分野で大きな技術革新 の原動力である¹¹.トランジスタは年々縮小を続け、その幅 あたりの原子は一つずつ数えられる領域まで到達しつつある。 今後もしばらくシリコンが中心的な役割を担うことは明白だ が、その先には原子レベルの精度で構造や界面が制御された 要素からデバイスが構築されると予想される.たとえば、単 一の原子や分子は繰り返し同一の構造を得ることが可能で、 有機分子であればデバイスに合わせた特性のものを無数の候

おおつか・けいご ● 東京大学大学院工学系研究科助教,2018 年東 京大学大学院工学系研究科博士課程修了,博士(工学), <研究テーマ> 電子デバイスのためのカーボンナノチューブ合成制御, <趣味>ウエイ トトレーニング

かとう・ゆういちろう ● 国立研究開発法人理化学研究所開拓研 究本部加藤ナノ量子フォトニクス研究室主任研究員,2005年カリフォ ルニア大学サンタバーバラ校物理学科博士課程修了,Ph.D. (Physics), <研究テーマ>ナノ物質の光物性,ナノ光デバイス物理,光量子デバイ ス,<趣味>スキー,吟醸酒,クラフトビール 補から選択したり新たに設計したりすることもできる.しか し,そのような極小の物質を1個ずつ取り扱うためには超 高真空や極低温環境を必要とし,身近なデバイスに用いるの に最適とはいいがたい.少し大きなサイズで考えると,量子 ドットのようにバルク結晶を小さくしたナノ構造は一つずつ 扱えるものの,今度は原子精度で同一の構造を得ることが難 しい.

そのような視点に立つと、グラフェンやカーボンナノ チューブをはじめとする原子層材料という材料群はユニーク な存在となる.原子1個または数個分の厚さで二次元に広 がった薄膜を最小単位とするため、数層まで薄くすると強い 量子効果でバルクとまったく異なる物性を示し、重ねる層数 や角度によっても変調の自由度をもちながら²⁾、繰り返し同 一の構造が得られる.それでいて面内方向のサイズは大きく できるため、特殊な装置を必要とせず、室温・大気中でも扱 える.また、層間は化学結合をもたず van der Waals 力で 結合するため、格子整合などの制約がなく異種原子層材料を 自由に組み合わせられる³⁾.さらに原子層を筒状に閉じた構 造をもつナノチューブでは、一次元という特異な幾何構造に 加えて、直径に応じたひずみや円周方向の量子化による物性 変調の幅が付加される.

単層カーボンナノチューブとフォトニクス

さて,ここでは単層カーボンナノチューブに着目する.文 字どおり炭素1層からなる筒状物質である(図1a).炭素原 子がハチの巣格子になった原子膜(グラフェン)を継ぎ目なく 筒状に丸めるには,六角形と六角形がぴったり重なるように 巻かなければならないが,その二つの六角形の中心を結んだ ベクトルによってナノチューブの構造は完全に決定される

図 1 単層カーボンナノチューブとカイラリティ a)単層カーボンナノチューブの構造.b)筒にした際の円周に相 当するベクトルは基底ベクトル **a**₁ と **a**₂を用いてカイラル指数 (*n*,*m*)で指定できる.

(図1b). このベクトルはグラフェン格子の基底ベクトルを 用いて(n,m)という整数の組(カイラリティ)で一意に定まる. その合成において,典型的には高温下で金属微粒子に炭化水 素ガスを供給することでカーボンナノチューブが析出し,成 長初期にひとたびカイラリティが決まると,100 µm 以上は 同じカイラリティを保って伸長する.その意味で1千万個 以上の原子から構成されながら構造が完全に一意に定まる稀 有なナノ物質で,巨大な単一分子と捉えることもできる.

この物質の興味深い特徴の一つに,巻き方によって電子構 造が大きく異なる点がある⁴⁾. n-mが3で割り切れる場合 はゼロギャップの金属であり,それ以外は直径に反比例した バンドギャップをもつ半導体となる.後者であれば,直径 1~1.5 nmのナノチューブのバンドギャップエネルギーは 1000~1700 nm程度と通信波長帯の波長域に対応する.直 接遷移型半導体であるため明るい発光を得ることができるし, ナノメートルの直径ながら長さは容易にミクロン以上のもの が得られるため,電極を取りつけて電流駆動で発光させるこ ともできる.ナノチューブは電気をよく通す半導体でもある のだ.

そんなナノチューブの発光が具体的に何に役立つかという と、筆者らは単一光子源としての応用に着目している.一般 に光が波であることは意識されやすいが、粒子としての光、 つまり光子として扱うことにも工学的な意味がある.つまり 光子一つひとつの量子状態を用いる量子情報通信,たとえば 物理法則によって盗聴できないことが保証されている量子暗 号や、量子状態を転送する量子テレポーテーションなど、古 典通信とは一線を画する技術に不可欠な要素である.単一の 分子や半導体量子ドット、またダイヤモンド中の単一欠陥な どが単一光子源になることが知られているが、伝送損失の少 ない通信波長帯(1000~1675 nm)の単一光子を室温で発生 できる材料として報告されているのはカーボンナノチューブ くらいである⁵⁾.

さて、カーボンナノチューブのように小さな発光体を用い る場合、同様に微小な光共振器を使うことでその発光特性を 効果的に制御することができる.光共振器とは、光を閉じ込 め定在波をつくりだすための器であり、単純なものは鏡を向 かい合わせたものである.とくに体積がきわめて小さいフォ トニック結晶共振器という微細構造中では光子の状態密度が 高まり、光子の発生レートが上がるため、発光効率を高める ことも可能である.また、共振器中の光をチップ内に導波さ せ、取りだして利用するためには共振器からわずかに漏れだ させる必要があり、共振器の構造をうまく設計することで取 りだす光の方向を制御できる.

実際にナノチューブを扱うのは難しい

ここまでカーボンナノチューブの潜在能力を説明してきた が、その風変わりな物質を活用する際の困難も多い(図 2 a). 単層のナノチューブでは構成原子のすべてが表面にあるため、 発光現象は表面に非常に敏感であり、ほかの物質と接してい ると光りにくくなる(あとで例外について触れる).そのため、 高い発光効率を得るために、数 μm 幅の溝をあらかじめ加工 しておき、そこにナノチューブを架橋させて宙に浮かす方法 がよく採用される.加えて、カイラリティ(n,m)の数だけ 発光特性が多様化することも、現状では障害としての側面が 勝る.光デバイスとして狙った機能をもたせるには、明る く発光してくれる表面状態を保ちながら特定の(n,m)を選び、 それを宙に浮かせるという何重もの要求が課されるからだ.

筆者らの研究室では、この気難しい物質の光物性やデバイ ス物理について研究をしてきた.その観点では、合成直後の

a) カーボンナノチューブの発光のしやすさ. 宙に浮いた部分が強 く発光する. b) ポリマー薄膜でナノチューブを包み込み, 形態を 保ち転写する.

図3 ナノチューブの転写手順

アントラセン結晶を拾い(a),それをスタンプとしてナノチューブを拾う(b).特定の構造のナノチューブを 探し,転写したい基板と位置合わせをして(c),アントラセン結晶ごと基板へとリリースする(d).加熱によ りアントラセンは昇華され(e),ナノチューブのみが残る(f).

とにかく清浄なナノチューブを探しだして測定することが基 本的な戦略であった。特定のカイラリティをもつナノチュー ブの選択合成技術は発展途上のため、これまではランダムに 成長した無数のナノチューブから調べたいカイラリティをも つものを自動で探索し、効率的に計測するシステムの構築に 注力してきた⁶⁾. 一次元構造に由来する吸収ピークが存在す るため、励起光の波長を掃引した際の発光スペクトルとその 強度比(吸収ピーク)から(n,m)が同定できるのだ。おおよそ の直径分布は制御可能で、そのなかのカイラリティの種類は 100 に満たないため、同じ (n,m) のものを多数探しだし、そ の物性を統計的に調べることができる。しかし、ナノチュー ブの発光を利用する場合、カイラリティに応じた波長をもつ ナノチューブの発光を、やはり構造に依存して特定の波長で のみ機能する微小光共振器⁷⁾によって制御しなくてはならな い。これら二つの構成要素の場所と波長が合致する必要があ るため、偶然に頼るならば探索の手間は2乗に膨れ上がり、 さらに構成要素が増えるにつれて同じ戦略では立ちいかなく なる。筆者らはこのような背景から、たくさん合成されたな かから原子レベルで構造がわかった1本のナノチューブを探 し、必要とされる場所に運ぶというアプローチへと舵を切っ たのである。

構造の似た分子を介してナノチューブを運ぶ

多数のナノチューブの形状を維持したまま,ある基板から 別の(デバイスを構築する)基板へ移動させる工程は「転写」 と呼ばれるが,この転写工程には自立可能なポリマー薄膜 を媒介することが多い(図2b).しかし,用済みのポリマー を溶媒に溶かす際の毛細管力により中空構造で柔らかいナノ チューブは容易に破壊され,さらに表面に絡まったポリマー 鎖を完全に除去することは難しい.単層でも数%の光吸収の ある二次元材料とは異なり,直径1nmの物質は普通の光学 顕微鏡では見ることができず,そもそもほしいナノチューブ がどこにあるのかがわからないことには,狙った場所へ運ぶ ことはできない.

そんな状況を打開すべく,筆者らはまず媒介材料を置き換 えることにした、保存食の乾燥に用いられるフリーズドライ 技術からおおいに着想を得て、液体を一切介さない「ドライ」 転写手法を考案した。フリーズドライされた食品は多孔質で 非常に軽量だが、これは水分を含んだまま凍結され減圧下で 水を昇華させるため、毛細管力が働かないためである。当然、 簡便な転写工程には低温での凍結や減圧は好ましくないため, 常温で固体、また常圧でも昇華性をもち、かつナノチューブ との親和性の高い物質がよい. そこで同様にナノカーボンと 呼ばれるフラーレンに着目した。分子量が大きく除去が難し いことにすぐ気づいたが、ここからナノチューブもフラーレ ンも芳香環をもち π-π 相互作用が働くというヒントが得ら れる. 合成後, 基板に貼りついているナノチューブを媒介材 で引き剥がす必要があるからだ。芳香環を2~5個もつ分 子をいくつか購入し、媒介材としての結晶成長を試みたとこ ろ、偶然にも、記録のためガラス基板に油性マーカーで書い た文字上にだけ大面積で薄膜状のアントラセン(芳香環が三 つ)単結晶が得られた。単結晶ということで高い強度をもち

自立可能なため,溝や凹凸のある基板にも移すことができる. また 100 ℃程度に加熱すれば 10 分ほど,室温でも数日経つ と完全に昇華するため,転写先の基板の材質も問わない.つ まり,アントラセン結晶の表面に一度貼りついたナノチュー ブはいかなる場所へも運ぶことできる.門外漢ながら,絶妙 な分子にたどり着いたと思う.

1本のナノチューブは見えないという問題については,筆 者らが得意とする顕微フォトルミネセンス分光で対応でき る.ナノチューブを感度よく検出するには,発光波長よりも 短い波長の光で励起し,それに伴う発光(フォトルミネセン ス)を検出することが効果的であるため,自作の分光装置を 改造してスタンプによる転写機構を組み込んだ.アントラセ ンは極性をもたずナノチューブとのあいだに電荷移動もほと んどない.そのため,転写工程中もナノチューブが明るく発 光し,その位置を正確に知ることができるという予期せぬ発 見もあった.

具体的な転写手順は以下のとおりである.まず,顕微鏡下 でガラス基板上に成長したアントラセン単結晶を透明なシリ コーンスタンプの表面に拾い上げる(図3a).アントラセン 単結晶の平坦な面をカーボンナノチューブ成長用基板へ押し つけ,すばやく引き離すと,その表面に多数のナノチューブ が拾い上げられる(図3b).ここで顕微フォトルミネセンス 分光によって,数百µm四方のアントラセン単結晶上のカー ボンナノチューブのなかからほしいカイラリティをもつもの を探索する.対象と目的地が定まったら,対象のカーボンナ ノチューブの居場所を追跡しながらアントラセン単結晶を転 写先の基板上へ貼りつけ,ナノチューブの位置を精密に制御 する(図3c,d).その後,100℃程度に加熱するとアントラ センが昇華され,結果としてカーボンナノチューブのみが残

図4 溝を架橋したナノチューブの発光

a) 転写後, 溝を架橋したナノチューブの電子顕微鏡像.(b) 架橋 部から得られる発光スペクトル(赤)と,同じナノチューブの基板 表面に支持された部分からの発光スペクトル(緑). る(図3e,f).

1本のナノチューブの構造も場所も制御

まず,基板表面に沿って長さ100 µm 程度に成長したカー ボンナノチューブを,この手法によって5 µm 幅の溝をもつ シリコン基板上に転写したところ,孤立した1本のカーボン ナノチューブを溝上に架橋させることができた(図4a).こ のカーボンナノチューブのフォトルミネセンスをさまざまな 位置で測定したところ,溝上の宙に浮いた部分では,シリコ ン基板表面に接している部分の約250倍の効率で発光する ことがわかった(図4b).合成基板上での発光強度と比較す ると,なんと約5000倍である.

さらにこの手法によるカイラリティ選択と位置制御の有用 性を示すべく、単一のカーボンナノチューブの発光をフォト ニック結晶微小光共振器と結合させた。この共振器は極微小 体積に特定の波長の光を閉じ込める器であり、共振器の中心 から約1µmの範囲に特定の(n,m)のナノチューブが直交し て置かれる必要がある。なお、共振器はシリコンでできてい るが、先述のとおりカーボンナノチューブには宙に浮いてい ないと明るく光らないという弱点がある。実は、この研究を 進めるかたわら、筆者らのグループでは六方晶窒化ホウ素と いう二次元絶縁体上に置かれたカーボンナノチューブは明る く発光するという例外も見いだした⁸⁾. 厚さ約 30 nm の六 方晶窒化ホウ素をナノチューブと共振器のあいだに挿入する ことで、発光強度の維持と共振器との高効率結合の両立を試 みた.両者の波長や位置,角度を合わせたうえで,選んだカー ボンナノチューブを共振器上に配置した結果、カーボンナノ チューブの発光が共振器と結合したことに由来する鋭いピー

図5 微小光共振器上に狙って転写された(13,5)のカイラリ ティをもつカーボンナノチューブの発光スペクトル 1514 nmの鋭いピークが共振器と結合した発光成分.挿入図は共 振器の電子顕微鏡像で,破線はナノチューブが配置されるべき位 置を示す.

クが得られた(図5).これまで数千個の共振器を地道に走査 することでナノチューブと結合した発光を探していたものが, この手法により約75%の確率で結合できるようになった⁹⁾.

以上のように、単結晶アントラセンという媒介材料を用い て、単一のナノチューブからの発光をモニタリングしながら 転写することで、原子精度で構造が定まったナノチューブを 高い位置精度で配置することができる。実は、アントラセン の結晶はナノチューブだけでなく、窒化ホウ素などの二次元 材料とも相性がよく、それらを簡単に溝に架橋させることが できる点も強調したい。ナノチューブを光共振器などのナノ 構造上に配置するに留まらず、たとえば、(*n*,*m*)が異なる複 数のナノチューブ,さらにはグラフェンや遷移金属ダイカル コゲナイドなど,次元を問わず原子レベルで構造が定まった 材料を構成要素として自在に組み合わせることで,今回の研 究がまだ見ぬ機能を発現させるテクノロジーを開拓すること に役立つことを期待している.

参考文献

R. H. Dennard et al., *IEEE J. Solid-State Circuits*, 9, 256 (1974). 2) Y.
Cao et al., *Nature*, 556, 43 (2018). 3) K. S. Novoselov et al., *Science*, 353, aac9439 (2016). 4) R. Saito et al., "Physical Properties of Carbon Nanotubes," Imperial College Press, London (1998). 5) I. Aharonovich et al., *Nat. Photon.*, 10, 631 (2016). 6) A. Ishii et al., *Phys. Rev. B*, 91, 125427 (2015). 7) R. Miura et al., *Nat. Commun.*, 5, 5580 (2014). 8)
N. Fang et al., *ACS Photon.*, 7, 1773 (2020). 9) K. Otsuka et al., *Nat. Commun.*, 12, 3138 (2021).