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Chiral modes near exceptional points in symmetry broken H1 photonic crystal cavities

C. F. Fong ,1,2,3,* Y. Ota,4,3 Y. Arakawa,3 S. Iwamoto ,3,5,6 and Y. K. Kato1,2,†

1Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
2Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan

3Institute for Nano Quantum Information Electronics, The University of Tokyo, Tokyo 153-8505, Japan
4Department of Applied Physics and Physico-Informatics, Keio University, Kanagawa 223-8522, Japan

5Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
6Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-0041, Japan

(Received 30 July 2021; revised 22 September 2021; accepted 23 September 2021; published 2 November 2021)

The H1 photonic crystal cavity supports two degenerate dipole modes of orthogonal linear polarization which
could give rise to circularly polarized fields when driven with a π/2 phase difference. However, fabrication errors
tend to break the symmetry of the cavity, which lifts the degeneracy of the modes, rendering the cavity unsuitable
for supporting circular polarization. We demonstrate numerically a scheme that induces chirality in the cavity
modes, thereby achieving a cavity that supports intrinsic circular polarization. By selectively modifying two
air holes around the cavity, the dipole modes could interact via asymmetric coherent backscattering, which is
a non-Hermitian process. With suitable air hole parameters, the cavity modes approach the exceptional point,
coalescing in frequencies and linewidths as well as giving rise to significant circular polarization close to unity.
The handedness of the chirality can be selected depending on the choice of the modified air holes. Our results
highlight the prospect of using the H1 photonic crystal cavity for chiral light-matter coupling in applications
such as valleytronics, spin-photon interfaces, and the generation of single photons with well-defined spins.
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I. INTRODUCTION

The dynamics of physical systems with open boundaries
that could exchange energy with their surrounding envi-
ronment can be described by non-Hermitian Hamiltonians.
Such systems, in general, do not have an orthogonal set of
eigenstates and there exist nontrivial degeneracies known as
exceptional points (EPs) at which both the eigenfrequencies
and eigenstates coalesce to become one and the same. There
is a surge in interest in non-Hermitian photonics and opti-
cal systems [1–3] due to the relative ease to implement the
complex potential required for non-Hermiticity in terms of the
refractive index by incorporating gain and/or loss. For exam-
ple, non-Hermiticity has been successfully introduced in the
whispering gallery resonators [4–10] via various means such
as the manipulation of excitation geometry [4,11], heating [9],
patterned metal depositions [5,10], patterned defect scatterers
[12], and the usage of nanotip scatterers [6,7]. Intriguing
phenomena have been reported in these whispering gallery
resonators including single mode lasing [4,5], enhanced sensi-
tivity to perturbations [7,9,13,14], directional coupling [6,15],
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enhanced spontaneous emission [12,16], chiral perfect ab-
sorbers [17], and the generation of a vortex laser beam [10].

Analogous to the whispering gallery resonator is the H1
photonic crystal (PhC) cavity due to the C6v rotational sym-
metry of the cavity. The H1 PhC cavity modes can be
approximated using the cylindrical harmonics as in the whis-
pering gallery resonator [18,19]. A notable feature of the H1
PhC cavity is that it could support two degenerate and orthog-
onal linearly polarized dipole modes. When the two modes are
driven with a π/2 phase difference, they give rise to circularly
polarized cavity fields. Such a nanocavity—given its small
mode volume and prospects for high Q factor—would be an
important component for chiral quantum optics [20], photonic
circuits [21,22], spin nanolasers, optical sensors [23], and
other applications. However, these functionalities are usually
hindered by fabrication errors of the nanocavity which tend
to lift the mode degeneracies, making it incapable of support-
ing circular polarization. Previous attempts to restore mode
degeneracies relied on implementing perturbation by strain-
ing the cavity [24], by purposefully designing a cavity in a
“stretched lattice” [25], or by nano-oxidation [26]. Nonethe-
less, an intrinsically circularly polarized nanocavity has yet to
be realized.

In this paper, based on the non-Hermitian effects in an
H1 PhC cavity, we propose a scheme to achieve chiral cavity
modes that could support intrinsic circular polarization. In our
scheme, two air holes around the cavity are selectively modi-
fied. The modifications of the first air hole give rise to a mode
splitting, while the second air hole is then modified to bring
the system towards or away from the EP. From our numerical
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FIG. 1. (a) Schematic showing the emission of circularly polarized light from a symmetry-broken H1 photonic crystal cavity. (b) Schematic
of the cavity in the xy plane with the key air holes and parameters labeled. See main text for the descriptions of the parameters. The first nearest
air holes are outlined with green circles while the relevant second nearest air holes are outlined with black circles. The coordinate origin
is at the center of the cavity. The purple dotted lines intersecting at the cavity center mark the direction of high symmetry along the �-K
directions while the blue dashed lines mark the hexagonal path, along which the air holes are shifted. (c) The relevant field distributions of the
two dipole modes in an unmodified cavity based on 2D FDTD simulations. (d) The distribution of the difference in the field intensities with
orthogonal circular polarization (spin angular momentum density, sd ẑ) when the dipole modes are superposed with ±π/2 phase difference,
giving predominantly RCP (LCP) field, respectively.

finite-difference time-domain (FDTD) simulation results, we
observe the characteristic branching in the surfaces of the
complex eigenfrequencies in the parameter space, indicating
the presence of an EP. Near the EP, there are chiral modes
with corresponding high degrees of circular polarization. The
chiral modes in turn emit circularly polarized light into the far
field, shown schematically in Fig. 1(a). By selecting different
pairs of air holes, modifications can be done in a controllable
manner to obtain either right circularly polarized (RCP) or
left circularly polarized (LCP) chiral modes. The coalescence
of the modes near the EP also promises the enhancement
of spontaneous emission [27,28] of the chiral modes. In the
following sections, we will describe and illustrate the key
concepts using two-dimensional (2D) simulations. We then
present simulation results of three-dimensional (3D) struc-
tures to show that practical devices are achievable.

II. H1 PHOTONIC CRYSTAL CAVITY

We consider a PhC which consists of a triangular lattice
of air holes with a lattice period of a and radius r, in a slab
of material of refractive index n. The H1 cavity is formed by

removing an air hole within the lattice [Fig. 1(b)]. We first
describe the relevant features and quantities of the H1 PhC
cavity based on 2D FDTD simulations. Figure 1(c) shows
the near-field profiles of the relevant transverse electric field
components of both dipole modes D1 and D2 in which the Ex

and Ey fields are dominant, respectively.
Each dipole mode in the H1 PhC cavity can be thought to

be constituted of two traveling wave components rotating in
the opposite directions [19], analogous to whispering gallery
modes [18]. In each dipole mode, the counter-rotation of the
two traveling components cancels out to result in a stationary
mode. In contrast, a superposition of the dipole modes with
a ±π/2 phase difference essentially recovers one of the trav-
eling modes that rotates in the clockwise (counterclockwise)
direction, producing a chiral mode with a dominant right
(left) circularly polarized field [Fig. 1(d)]. This phenomenon
is known as spin-momentum locking, in which the direction
of rotation of the traveling mode is directly correlated to the
handedness of its chirality.

In order to quantify chirality, one could first calculate the
spin angular momentum density [29], sd = Im (εoεrE∗×E +
μoμrH∗×H )/4. The symbol E (H) represents the electric
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(magnetic) field vector, the asterisk (*) indicates complex
conjugation, and Im() means taking the imaginary part. εo

(εr) and μo (μr) are the vacuum (relative) permittivity and
vacuum (relative) permeability, respectively. Since the cavity
modes are transverse electric in nature with the electric fields
oscillating in the plane of the PhC slab, sd points in the
out-of-plane ±ẑ direction and thus we only consider the z
component of sd . We note that the z component of sd can be
regarded as the difference in the intensity of RCP and LCP
fields: sd ẑ = IRCP − ILCP ∝ |Ex + iEy|2 − |Ex − iEy|2. The H
field has no contribution to sd ẑ since only Hz is nonzero.
The degree of circular polarization (DCP) can then be ob-
tained by dividing sd with the total field energy density, W =
(εoεrE∗ · E + μoμrH∗ · H )/4, giving a value between ±1.
Despite the spatial extent of the electric fields, the intensities
(and thus energy densities) are largely confined to the cavity,
with minimal leak outside of the cavity. Furthermore, as the
dominant electric field components and the z component of sd

have the strongest intensity at the cavity center, the DCP at the
cavity center can be taken as a representative measure of the
chirality of the cavity.

Two-dimensional FDTD simulations are performed using
a PhC cavity with an overall hexagonal shape so that it is
consistent with the C6v symmetry of the cavity in order to
avoid or reduce any unintended perturbation to the cavity
modes. It is important to note that for 2D simulations the PhC
needs to be of a finite size to induce lateral losses such that
it forms a non-Hermitian open boundary system. Since the
two modes need to be overlapping to support chirality, we
ensure that the spectral widths of the modes are sufficiently
broad by using a 9×9 air hole lattice. The FDTD simu-
lations are performed using the open-source package MEEP

[30], with parameter values a = 300 nm, r/a = 0.3, and a
grid resolution of ≈a/16 (54 pixels/micron). We consider a
material of n = 3.4, for example, GaAs. A Gaussian-pulse
point current source with a sufficient spectral width is placed
at the center of the cavity as the excitation source. Given these
parameters, the dipole modes are obtained at a normalized
frequency of a/λcav ∼ 0.244. The Q factor, which is the ratio
of the mode center frequency to its linewidth, is ≈450. For an
unmodified cavity, the modes are not completely degenerate,
with a splitting of ≈1.5 linewidth for the parameters given
above. The nondegeneracy is possibly due to the discretiza-
tion of the simulation grid and it persists even at higher grid
resolutions. Nonetheless, this nondegeneracy poses no signif-
icant issues to our scheme. On the contrary, it presents us
with a system that more closely resembles an actual sample
which tends to have nondegenerate modes due to fabrication
errors.

III. SURFACES OF COMPLEX EIGENFREQUENCIES
AND THE EXCEPTIONAL POINT

In our scheme to achieve a chiral cavity, two second nearest
air holes to the cavity in the �-K directions are modified to
give the necessary perturbation to the modes. In principle,
our scheme could work by modifying either the first or the
second nearest air holes to the cavity. The first nearest air
holes are in the direct vicinity of the modes and thus even
small modifications to these air holes could result in excessive

perturbations. Despite being further away from the cavity,
modifications to the second nearest air holes could still pro-
vide sufficient perturbation. In addition, certain second nearest
air holes are positioned closer to the antinodes of either one of
the two dipole modes. As such, each modified air hole would
predominantly perturb one of the dipole modes. For these
reasons, our scheme is based on the second nearest air holes as
they allow for better control and intuitive understanding over
the effects of their modifications.

The relevant second nearest air holes for our scheme are
labeled as 21 to 26 in Fig. 1(b). The radii and the positions
of two air holes are modified at a time. The positions of the
air holes will be shifted along the direction of high sym-
metry [purple lines in Fig. 1(b)] towards (negative shift) or
away (positive shift) from the cavity. The air holes could also
be shifted along the hexagonal path around the cavity [blue
dashed lines in Fig. 1(b)] with clockwise (counterclockwise)
shift being the positive (negative) direction. The hexagonal
path is defined by the distance from the cavity center to the
center of the relevant air hole after the air hole has been
shifted along the direction of high symmetry. The change in
the air hole radius, shift along the direction of high symmetry,
and shift along the hexagonal path will be labeled as �r, d ,
and p, respectively, followed by the hole number in subscript,
e.g., �r21. The different cases described in this paper will
be referred to in accordance with the pair of air holes that
are being modified; for example, h21h23 refers to the case in
which air holes 21 and 23 are modified.

We begin with the h21h23 case, where the following fixed
modifications are applied to the air holes: the radius of air
hole 21 is enlarged (�r21 = +0.03a) and shifted towards the
cavity (d21 = −0.1a), while air hole 23 is also shifted towards
the cavity (d23 = −0.20a). p23 and �r23 are then varied over
a range of values for the parameter sweep simulations. In par-
ticular, air hole 23 is shifted towards y = 0, i.e., negative p23

values. FDTD simulation is performed for each combination
of p23 and �r23 to extract the complex eigenfrequencies of the
two modes ω±, as well as the temporal evolution of sd ẑ, W ,
and the DCP.

Presented in Figs. 2(a) and 2(b) are the surfaces of the
extracted real and imaginary eigenfrequencies, Re(ω±) and
Im(ω±), respectively, normalized to their midpoints ωm =
(ω+ + ω−)/2 within the parameter space spanned by �r23

and p23. The surfaces of the eigenfrequencies exhibit char-
acteristics of a non-Hermitian system. For both Re(ω±) and
Im(ω±), there are particular regions where the surfaces come
close together, indicating that the eigenfrequencies are close
to degeneracy. The points of interest are marked with blue
dots (black squares) for the real (imaginary) eigenfrequencies
and their values plotted in Fig. 2(c). The resulting plot shows
the branching in the eigenfrequencies with p23 as the “tuning
parameter.” To show where these points of interests lie within
the parameter space, Figs. 2(d) and 2(e) present a different
visualization of the eigenvalue surfaces, namely, the distri-
butions of the absolute difference in the real and imaginary
eigenfrequencies, respectively. In the range of p23 = −0.30a
to −0.20a, Re(ω±) are close to being degenerate over a range
of �r21 values, while Im(ω±) are split into two branches. At
around p23 = −0.20a, Re(ω±) begins to branch while the two
branches of Im(ω±) merge.
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FIG. 2. Surfaces of the (a) real and (b) imaginary eigenfrequencies normalized to their midpoints ωm = (ω+ + ω−)/2. The points of interest
that give the characteristic branching associated with the presence of an EP are marked on the surfaces in blue dots and black squares for the
real and imaginary eigenfrequencies, respectively. Inset: Schematic indicating the air hole with fixed modifications only (orange circle) and
the air hole with both fixed and parameter sweep modifications (red circle). The red arrow indicates the direction that the air hole is being
shifted along the hexagonal path. (c) The branching of the real (blue dots) and imaginary (black squares) frequencies plotted against p23. The
region where the EP is expected to occur is highlighted in yellow. Color plots show the absolute difference in the (d) real and (e) imaginary
eigenfrequencies within the parameter space spanned by �r23 and p23. The cyan line traces along the branching of the eigenfrequencies. The
region where the EP is expected to occur is indicated with bigger data markers.

The branching of eigenfrequencies indicates the presence
of an EP within the parameter space defined by all the five
parameters that we consider here—d21, �r21, d23, �r23, and
p23—and possibly other parameters. At the exact EP, the
branch points of Re(ω±) and Im(ω±) will coincide. In our
simulation results, the branch points of Re(ω±) and Im(ω±)
do not coincide exactly, which could be related to the non-
degeneracy of the dipole modes of the unmodified H1 PhC
cavity. Although the location of the EP becomes less well
defined, the EP is expected to occur in the vicinity of p23 =
−0.20a as marked by the yellow region in Fig. 2(c).

IV. CHIRAL MODES

To determine the chirality of the modes, we perform FDTD
simulations with long simulation time of about 2000 wave
period propagation for each combination of parameter values.
The simulation time is dependent on the cavity field lifetime,
which is associated with the Q factor. The simulation time—of
more than five times the cavity field lifetime—used here is to
ensure that the cavity field evolves sufficiently to reflect its
intrinsic polarization. The DCP at the cavity center at every
fixed time step is recorded during each simulation. From the
temporal evolution of the DCP at the cavity center, we cal-
culate its time-averaged value, 〈DCP〉, taking care to consider
only the temporal evolution of DCP after the excitation source
has been turned off.

Figure 3(a) shows the distribution of 〈DCP〉 under lin-
early polarized excitation oriented at 45◦ relative to the x
axis (LP45) for the h21h23 case. Despite the linearly polar-
ized excitation, we observed RCP chiral eigenmodes near

the EP, achieving the largest 〈DCP〉 of 0.94 at parameters
p23 = −0.20a and �r23 = 0.01a. At the chiral mode, the cav-
ity fields evolve temporally from its initial linearly polarized
state—as determined by the excitation polarization—to its in-
trinsic polarization. A temporal slice of the spatial distribution
of DCP around the cavity at ≈1700 wave period propaga-
tion at the parameters with the largest 〈DCP〉 is presented in
Fig. 3(c). The DCP at the center of the cavity at this instant can
be taken as a measure of the intrinsic polarization, indicating
that the cavity modes are intrinsically RCP with a DCP of
0.97. While there are other regions around the cavity with
significant DCP, the field intensity [Fig. 3(e)] at these regions
is negligible and thus irrelevant to the mode chirality.

A different example with LCP chiral modes is the h21h22
case [Fig. 3(b)]. The fixed modifications to air holes 21 and
22 are similar to those in the h21h23 case: �r21 = +0.03a,
d21 = −0.10a, and d22 = −0.20a. For the parameter sweep,
the air hole 22 is shifted towards y = 0 by applying positive
p22 values. The distribution of the eigenfrequencies and the
branching is largely similar to that of the h21h23 case but
flipped about the vertical axis (not shown). Performing the
simulations under LP−45 excitation, the 〈DCP〉 in the param-
eter space indicates LCP chiral eigenmodes in the vicinity
of the EP [Fig. 3(d)], achieving the largest 〈DCP〉 of −0.80
at parameters p22 = −0.19a and �r22 = 0.01a. The corre-
sponding temporal slice of the DCP distribution around the
cavity [Fig. 3(d)] gives an intrinsic polarization of −0.83, with
the field intensities similarly centered at the cavity [Fig. 3(f)].

Despite using modifications of the same magnitude in the
air holes in both the h21h22 and h21h23 cases, the difference
in the distribution of 〈DCP〉 in the two cases could be due
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FIG. 3. Distribution of 〈DCP〉 in the parameter space for (a) the h21h23 case under LP45 excitation and (b) the h21h22 case under LP−45

excitation. Insets: Schematics indicating the modified air holes. (c), (d) The distribution of the DCP around the cavity at ≈1700 wave period
propagation with the parameter values where the 〈DCP〉 is maximally right and left circular polarized for the two respective cases: p23 =
−0.20a, �r23 = 0.01a for the h21h23 case and p22 = −0.19a, �r22 = 0.01a for the h21h22 case. The scale bar represents one lattice period.
The color bar is shared for (a)–(d). (e), (f) The distribution of the difference in the field intensities (spin angular momentum density) where the
〈DCP〉 is maximally right and left circular polarized for the RCP and LCP chiral cases, respectively. The field intensity and thus field energy
density are centered in the cavity as expected. The DCP at the center of the cavity can be taken as a measure of chirality. The color bar is
shared for (e) and (f).

to the interaction between the two modified air holes via
scattering [18]. Such interactions between air holes are more
likely to occur for the h21h22 case since the modified air holes
are closer to each other. These findings suggest that the air
hole modifications of the h21h23 and h21h22 cases need to be
optimized separately to obtain the intended chiral modes with
high DCP.

As an alternative to the h21h22 case, air holes 22 and 24
can be modified instead, i.e., a mirror reflection of the h21h23
case about the y axis, which gives LCP chiral modes with the
same magnitude in the DCP as that in the h21h23 case. This
shows the versatility of our scheme: when a chiral mode is
found, the mode with the opposite chirality can be obtained
simply by symmetry considerations, namely, by reflection of
the PhC cavity about the x or y axis.

We confirmed that the eigenmodes near the EP remain RCP
or LCP for the respective cases presented above regardless
of the excitation polarization, providing further support that
the chirality is indeed an intrinsic property. The excitation
polarization will, however, affect the initial polarization of
the cavity modes and the subsequent temporal evolution of
the cavity field polarization, giving rise to varying 〈DCP〉.
The 〈DCP〉 values are slightly lower than the intrinsic DCP
values since the cavity modes evolve from the initial linearly
polarized state with zero DCP to its intrinsic chiral state over
some time. We find that, for linearly polarization excitation,
orientation at 45◦(−45◦) gives the largest achievable 〈DCP〉
for the RCP (LCP) chiral modes (see Appendix B for further
details). Our choice of excitation polarization is based on
this observation, which helps to simultaneously highlight the

intrinsic nature of the chirality as well as to show the large
DCP of the chiral modes.

As mentioned in Sec. II, the dipole modes can be thought of
as a superposition of rotating components. As the eigenmodes
approach the EP, they coalesce and eventually become one
and the same at the EP. In this regime, the eigenmodes are
no longer stationary. The asymmetric coherent backscattering
between the two eigenmodes causes unbalanced amplitudes
of the constituent counter-rotating components [18]. As a
consequence, only one of the constituent rotating components
is dominant and both the eigenmodes corotate in the same
direction. A clockwise (counterclockwise) rotating mode will
result in a RCP (LCP) mode due to spin-momentum locking.
Such clockwise (counterclockwise) rotation of the field pro-
files is indeed observed in the FDTD simulations for chiral
modes of the h21h23 (h21h22) cases (see Appendix C). The
choice of modified air holes—22 or 23—will mainly induce
either a “forward or backward” backscattering, allowing one
to select a dominant rotating mode and thus the handedness of
the chirality (see Appendix A for further details).

V. 3D FDTD SIMULATION

To simulate practical 3D devices, we consider a PhC with
the same 9×9 air hole lattice, lattice period, and air hole radius
as in the 2D simulations, with an additional dimension of
slab thickness set to be 0.5a. A grid resolution of ≈a/17 (57
pixels/micron) is used in the simulations. The Q factor of an
H1 PhC cavity mode tends to be low. In fact, using an air hole
lattice larger than 9×9 only gives very minimal increase in
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FIG. 4. Simulation results of the 3D h21h23 case under LP45 exc. (a), (b) Distribution of the absolute difference in the (a) real and
(b) imaginary eigenfrequencies within the parameter space. Color plots show (c) 〈DCP〉 at cavity center and (d) the far field 〈DCP〉 within
NA = 0.65 in the parameter space. The colorbar is shared for (c) and (d). (e) Temporal slices of the DCP around the cavity (top) and in the far
field (bottom) ≈2000 wave period propagation for parameters p23 = −0.20a and �r23 = −0.05a. At this instant, the DCP at the center of the
cavity approaches 0.92 and the mean DCP within NA = 0.65 (black circle) approaches 0.94. The colorbar is shared for both plots. The scale
bar indicates one lattice period.

the Q factor. As such modifications to the nearest air holes are
usually required to achieve a high Q factor [31]. In order to
show that our scheme is compatible with other modifications,
we changed the radius of all the first nearest air holes (r1)
from 0.3a to 0.28a, increasing the Q factor from ≈200 to
≈320. The dipole modes of the r1-modified H1 PhC cavity
are at a/λcav∼0.294 with a mode volume of ≈0.35(λ/n)3. The
dipole modes are not completely degenerate with a splitting of
≈0.5 times the linewidth.

To achieve chiral modes, we apply the following mod-
ifications to the selected second nearest air holes for the
h21h23 case: �r21 = +0.01a, d21 = −0.115a, and d23 =
−0.225a. Figures 4(a) and 4(b) show the absolute difference
of the Re(ω±) and Im(ω±), respectively, with the distribu-
tions reflecting the complex eigenfrequency surfaces with the
characteristic branching indicating the presence of an EP as
expected.

In 3D simulations, we are able to extract the far-field emis-
sion. The far field—in the spherical coordinate—is calculated
from the near-field distribution via Fourier transform [32,33].
In addition to the DCP at the cavity center, we monitor the
temporal evolution of the DCP of the far-field emission. At ev-
ery fixed time step, the mean far-field DCP within a numerical
aperture (NA) � 0.65 is calculated and recorded. The choice
of NA � 0.65 is to reflect realistic experimental conditions
based on the commonly available and often-used microscope
objective lenses.

It is found that the temporal evolution of the DCP at the
cavity center and the mean far-field DCP follow each other
closely, especially in terms of the trend though the values may
differ slightly. The time-averaged DCP and mean far-field
DCP in the parameter space obtained under LP45 excitation
are presented in Figs. 4(c) and 4(d), respectively. RCP chiral
modes are observed near the EP as expected, with the 〈DCP〉
reaching 0.82 at the cavity center and 0.88 in the far field
at p23 = −0.20a and �r23 = −0.05a. Figure 4(e) shows the
temporal slices of the DCP around the cavity (top) and in
the far field (bottom) at ≈2000 wave period propagation for

parameters p23 = −0.20a and �r23 = −0.05a. The far-field
emission is RCP throughout. At this instant, the DCP at the
center of the cavity approaches 0.92 and the mean DCP within
NA = 0.65 (black circle) approaches 0.94, indicating the
intrinsic DCP of the chiral modes.

For the 3D h21h22 case, slightly different fixed modifi-
cations are used: �r21 = −0.01a, d21 = −0.145a, and d22 =
−0.23a. We obtained LCP chiral modes with 〈DCP〉 of −0.73
and −0.82 at the cavity center and in the far field, respectively,
at p22 = −0.24a and �r22 = −0.05a (Fig. 5). The intrinsic
DCP approaches −0.83 at the cavity center and −0.90 in the
far field.

To achieve chiral modes in this scheme, one only needs
to find suitable parameter values to bring the system close to
the EP without having obtain the exact EP. Strictly speaking,
only the eigenmodes near the EP exhibit significant chirality
and the chirality goes to zero at the EP [6]. As such, chiral
modes can be achieved under less stringent conditions, further
highlighting the practicality of our scheme. In Appendix B, we
present a discussion of a two-mode approximation model that
supports our key findings in the FDTD simulations.

Comparing simulations results for the r1-modified and -
unmodified H1 PhC cavity (results not shown), we find that
the r1-modified PhC cavity requires larger modifications to
the second nearest air holes in order to achieve chiral modes.
Using the h21h23 case as an example, with r1 modified, holes
21 and 23 need to be shifted closer to the cavity and the radius
of hole 23 needs to be reduced by a larger magnitude. We
also found that larger changes to the first nearest holes to
increase the Q factor will require larger modifications to the
second nearest air holes to obtain chiral modes. Should the
required modifications to the second nearest air holes become
so significant such that the structure is rendered impractical—
for example, adjacent air holes are in contact or the air holes
become too small for nanofabrication—one could instead
modify two selected first nearest air holes to achieve chiral
modes. As such, by applying all necessary modifications to the
first nearest air holes, one could achieve a high-Q chiral cavity.
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FIG. 5. Simulation results of the 3D h21h22 case under LP−45 exc. (a), (b) Distribution of the absolute difference in the (a) real and
(b) imaginary eigenfrequencies within the parameter space. Color plots show (c) 〈DCP〉 at cavity center and (d) the far field 〈DCP〉 within
NA = 0.65 in the parameter space. (e) Temporal slices of the DCP around the cavity (top) and in the far field (bottom) ≈2000 wave period
propagation for parameters p22 = −0.24a and �r22 = −0.05a. At this instant, the DCP at the center of the cavity approaches −0.83 and the
mean DCP within NA = 0.65 (black circle) approaches −0.90. The colorbar is shared for both plots. The scale bar indicates one lattice period.

A PhC nanocavity confines optical fields within a small
mode volume facilitating strong light-matter coupling as well
as the Purcell effect which describes the enhanced spon-
taneous emission. The local density of states near the EP
is altered due to the nonorthogonality of the modes which
could in turn give additional enhancement to the spontaneous
emission [27,28,34]. This additional enhancement can be im-
proved by increasing the Q factor or by introducing material
gain [27], which are both applicable to the chiral PhC cavity,
highlighting the prospects of using such chiral PhC cavity for
device applications.

VI. CONCLUSION

We have presented a scheme to design intrinsically circu-
larly polarized chiral H1 PhC cavities. In this scheme, the
symmetry of the cavity is broken intentionally by modifying
two of the second nearest air holes to the cavity in the �-K
directions. The modifications induce an asymmetric coherent
backscattering between the two eigenmodes, which is a non-
Hermitian process. As a result, within the parameter space of
the modified air holes, there are EPs at which the eigenfre-
quencies and the eigenmodes coalesce. In the vicinity of the
EP, the eigenmodes are no longer stationary but are corotating
modes with an overall direction. This in turn gives rise to
chiral modes in which the DCP is correlated with the rotation
direction of the mode profile. From the 3D FDTD simulation
results, we show that a practical device is achievable in which
both the near-field and far-field emission exhibit near unity
DCP. The handedness of the chirality can be controlled by
modifying selected air hole pairs.

The PhC nanocavity localizes the optical fields in a small
mode volume while being able to maintain a relatively high
Q factor and is thus capable of achieving a high Q-to-mode
volume ratio which is important for quantum information
technologies [35]. In addition, incorporating chirality in
the form of circular polarization in our proposed H1 PhC
nanocavity will provide additional degrees of freedom for
optical control and information processing. Our proposed

chiral PhC nanocavity expands the toolbox of exceptional
point photonics and will complement existing chiral whis-
pering gallery mode resonators [6,15,16], chiral photonics
structures [20,36,37], as well as metamaterials [38–41] for
extended functionalities. By exploiting the favorable prop-
erties of the chiral H1 PhC nanocavity, one could expect
the further development of chiral photonics applications such
as valleytronics with 2D materials [42,43], spin-photon in-
terfaces [44,45], and the generation of single photons with
well-defined spins [46].
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APPENDIX A: SELECTING CHIRALITY

In the case of a microdisk or microring resonator, two
scatterers can be placed close to the edge of the resonator
to induce the necessary backscattering to bring about EPs
[6,12,18]. One of the scatterers is usually fixed, for example,
at the field antinode of the whispering gallery mode and the
position of the second scatterer is varied. The backscattering
conditions to achieve an EP are met when the second scatterer
is rightly positioned close to an antinode and EPs would
occur periodically as the second scatterer is moved across
consecutive antinodes. In addition, the system would alter-
nate between dominant forward and backward backscattering,
therefore the associated handedness of the chirality would also
switch periodically.

Consequently, it should be possible to selectively induce an
EP of a specific chirality by a judicious placement of scatterers
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FIG. 6. h21h23m cases in which parameter sweep is performed (a)–(d) on air hole 23m and (e)–(h) on air hole 21. The color plots present
the absolute difference in the eigenfrequencies and the 〈DCP〉 at cavity center as labeled at the color scales. A 45◦ linearly polarized source
is used for excitation. In both cases, the distributions of the absolute difference in the eigenfrequencies indicate the presence of two EPs.
The chirality associated with each EP is of opposite handedness, giving RCP (LCP) eigenmodes when respective air holes are shifted in the
clockwise (counterclockwise) direction along the hexagonal path. For the simulations in (a)–(d), the fixed air hole modifications are �r21 =
+0.02a, d21 = −0.08a, and d23m = −0.17a. For (e)–(h), the fixed air hole modifications are given by �r23m = +0.04a, d23m = −0.10a, and
d21 = −0.22a.

relative to the antinodes of the mode profiles. Note that the
antinode here refers to the antinode of a nominally unper-
turbed mode profile as significant perturbation near the EP
could strongly affect the mode profile and reduce the visibility
of the antinodes [6,18].

The h21h22 and h21h23 H1 PhC cavity cases described
in the main text are consistent with the previously reported
observations in the whispering gallery resonators. In the H1
PhC cavities, the modified air holes behave as the scatterers.
Only one EP exists within the parameter space in each of the

two cases. The resulting chiralities of the eigenmodes near the
EPs are of opposite handedness in the two cases depending on
whether the modified air hole is to the left or the right of the
antinode of the D1 dipole mode profile.

To further verify this idea, we perform simulations in
which air hole 21 and the air hole between 22 and 23—which
we refer to as air hole 23m—are modified. Both the air holes
are originally aligned to the antinodes of the D1 and D2 dipole
mode profiles. As such, moving either one of the air holes
along the hexagonal path should, in principle, give two EPs

FIG. 7. The distribution of the absolute differences in the (a) real and (b) imaginary eigenfrequencies within the parameter space. The
distribution of the 〈DCP〉 under (c) RCP, (d) LCP, and (e) linearly polarized excitation oriented at 45◦. The modes near the EP in the negative
(positive) Re(�) region are of LCP (RCP) chirality. The colorbar is shared for the plots in the bottom row. The following values are used for
these modeling results: ω1 = 1.0027 − 0.0022i, ω2 = 1 − 0.0020i, f1 = 0.025, f2 = 0.04, s1 = 0.195i, and s2 = 0.200i.
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FIG. 8. Temporal evolution of DCP calculated using the (a), (c) two-mode approximation model and (b), (d) 3D FDTD simulations. Plots
(a) and (b) compare the temporal evolution of DCP under different excitation polarization for the corresponding RCP chiral modes, while
(c) and (d) correspond to the LCP chiral modes obtained in the two-mode approximation and 3D FDTD simulations, respectively. The gray
areas in the plots of the FDTD simulation results indicate the period of time when the excitation is on. The temporal evolution of DCP under
vertical linear polarization, LPy, excitation (not shown) is exactly the same as that under horizontal linear polarization, LPx , for both the two-
mode approximation model and FDTD simulations. The temporal evolution of DCP in the far field from the FDTD simulations is largely similar
to that at the cavity center and thus not presented here. The relevant parameter values for (a) are Re(�) = 7.3×10−3, Im(�) = −7.5×10−4;
(b) p23 = −0.20a, �r23 = −0.05a; (c) Re(�) = −7.0×10−3, Im(�) = 7.8×10−4; and (d) p22 = −0.24a, �r22 = −0.05a.

with associated chiralities of opposite handedness within the
parameter space. In the simulations, we use LP45 excitation in
the simulations to demonstrate the independence of the mode
chirality on the excitation polarization. The expected behavior
is indeed observed in the 2D FDTD simulation results (Fig. 6).
Under cocircular polarization excitation, the 〈DCP〉 of the
chiral modes approaches 0.95.

For the h21h22 case described in the main text [Fig. 3(b)],
there is a region around p22 = 0.25a to 0.275a in which
the modes have a modest degree of RCP instead of LCP.
The appearance of such a region suggests the onset of for-
mation of the second EP with the opposite chirality for the
particular set of �r21, d21, and d22 parameter values used.
Such a corresponding opposite chirality region is also present,
though much less prominent, in the h21h23 case [Fig. 3(a),
p23 = −0.275a to −0.25a]. By further modifying the air hole
parameter values, it is possible to clearly observe two EPs
within the parameter space.

APPENDIX B: TWO-MODE APPROXIMATION MODEL

For a non-Hermitian PhC nanocavity system that is
sufficiently close to the EP, it can be described by a two-
dimensional Hamiltonian associated with the two coalescing
states [47]. To approximate a H1 PhC cavity, we can define
a Hamiltonian as follows, in which the basis states are the Ex

and Ey electric fields of the two respective linearly polarized

dipole modes:

H (�) =
[
ω1 0
0 ω2

]
+ �

[
f1 s1

s2 f2

]
.

The second term on the right-hand side can be thought
of as the perturbation. The terms ω1,2 and f1,2 determine the
noninteracting resonance frequencies ω1,2 + � f1,2. The terms
s1(s2) represent the coherent backscattering from mode D1 to
D2 (D2 to D1) and � is the tuning parameter. For s1,2 	= 0, the
eigenfrequencies are

ω±(�) = 1/2[ω1 + ω2 + �( f1 + f2)

±
√

( f1 − f2)2 + 4s1s2(� − �1)(� − �2)]
(B1)

where �1 and �2 are the values at which the EP occurs, given
by �1 = −i(ω1−ω2 )

i( f1− f2 )+2
√

s1s2
and �2 = −i(ω1−ω2 )

i( f1− f2 )−2
√

s1s2
. The square

root terms on the right-hand side of Eq. (B1) give rise to
the characteristic distribution of eigenfrequencies with the
branching in the parameter space. The Hamiltonian can be
solved to obtain two eigenvectors (eigenmodes) �± and a
general wave function can be defined to describe the temporal
evolution of the eigenvectors, ψ (t ) = a+�+ exp(−iω+t ) +
a−�− exp(−iω−t ). The amplitudes a± can be solved by
considering initial conditions at t = 0 based on the excita-
tion polarization; for example, RCP excitation gives ψ (0) =
(1/

√
2, i/

√
2) and so on. From the wave function, one could

then calculate the temporal evolution of the spin angular
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FIG. 9. Hz field profiles showing (a) the rotation of the eigenmodes near the EPs, as well as (c) the intensities of the RCP, LCP cavity
fields and (d) their difference calculated using the field components at a certain time step for the h21h23 case. (b) Schematic of the PhC cavity
indicating the modified air holes for the h21h23 case. The corresponding plots for the h21h22 case are presented in (e)–(h). Results here are
obtained from 2D FDTD simulations at parameter values p23 = −0.20a, �r23 = 0.01a for the h21h23 case and p22 = −0.19a, �r22 = 0.01a
for the h21h22 case, consistent with that in the main text. Each time step �t is 10 wave period propagation.

momentum density, field energy density, as well as the DCP
as is done for the FDTD simulations.

Figure 7 shows the distribution of the absolute difference in
the real and imaginary eigenfrequencies calculated using the
two-mode approximation model. There are clear signatures
of branching, and there are two EPs within the parameter
space spanned by Re(�) and Im(�) as expected from the
Hamiltonian. The distribution of the eigenfrequencies does
not match with that from FDTD simulations since Re(�)
and Im(�) do not correspond directly to the air hole sweep
parameters. Nonetheless, using the model, the eigenmodes in
the vicinity of both the EPs are chiral with high DCP but of
different handedness. It can be seen from the figure that the
handedness of the chirality is independent of the excitation
polarization.

The temporal evolution of DCP calculated using the two-
mode approximation is highly consistent with that from the
FDTD simulations (after the excitation has been turned off)
for both the RCP [Fig. 8 (top row)] and LCP [Fig. 8 (bottom
row)] chiral modes. The initial polarization of the cavity fields
is essentially determined by the excitation polarization. The
cavity fields then proceed to evolve to their intrinsic polariza-
tion after the excitation is turned off. The temporal evolution

of the polarization is, however, less intuitive for the LP±45

excitations. After the LP45(−45) excitation, the cavity fields
tend to subsequently become RCP (LCP) regardless of the in-
trinsic polarization. This suggests that when oriented at ±45◦
the linearly polarized excitation imposes a relative ±π/2
phase between the two orthogonal linear basis modes before
allowing them to reach their intrinsic polarization. As such,
for linearly polarized excitation, orientation at 45◦(−45◦) is
favored to obtain a larger 〈DCP〉 for the RCP (LCP) chiral
modes. Under copolarized excitation, the instantaneous DCP
of the chiral modes remains high throughout the simulation
time, giving the maximum 〈DCP〉 which can also be seen in
Fig. 7. Despite the simplicity of the model, it captures the key
features of the FDTD simulation results of the H1 PhC cavity.

The temporal evolution of the DCP suggests that the chi-
ral cavity behaves akin to an omnipolarizer—a polarizer that
outputs light of a specific polarization regardless of the input
polarization—provided that the cavity fields have sufficient
time to evolve to the intrinsic circular polarization. The chiral
cavity could exhibit optical activity in the form of circular
dichroism and optical rotation. Circular dichroism could arise
as modes of a certain circular polarization will have more
density of states, thus resulting in differential absorption of
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the orthogonal circular polarization. Such a differential ab-
sorption would in turn give rise to optical rotation such that the
transmitted light could experience a rotation in its polarization
axis, as well as acquiring ellipticity. The optical rotation will
be dependent on the interaction time with the cavity and exci-
tation polarization due to the temporal polarization response
of the chiral cavity.

It is worth noting that the two-mode approximation model
in the context of our paper has a number of similarities with
the Born model of optical activity [48,49].

(1) Both models consider two orthogonal (linear) dipoles.
(2) The dipoles are mutually coupled, giving rise to further

optical effects.
(3) Both models are essentially platform agnostic, i.e., ap-

plicable to a wide variety of systems/materials.
(4) Both models consider some form of mediated interac-

tion between the two dipole modes.
In the Born model, the two dipoles are separated by a

distance and the interaction is facilitated by the oscillating
fields of the dipole. In the two-mode approximation model,
the backscattering between the two dipoles modes can be
considered to be facilitated by coupling to external modes in
the environment via loss (or gain).

APPENDIX C: ROTATING MODES

Near the EPs, the eigenmodes are rotating modes. For the
h21h23 case, the eigenmodes rotate in the clockwise direction
as exemplified by the change in the Hz field profile with
time in Fig. 9(a). Also shown are the intensities of the RCP
and LCP cavity fields [Fig. 9(c)] as well as their difference
[Fig. 9(d)] calculated using the field components at a certain
time step for the h21h23 case, confirming the presence of
dominant RCP cavity fields. Figures 9(e)–9(h) show the cor-
responding plots for the h21h22 case, with counterclockwise
rotating eigenmodes and dominant LCP cavity fields.

APPENDIX D: FURTHER SIMULATION DETAILS

We note that our simulations do not consider any material
dispersion. Given that we are dealing with resonant modes,
the effect of material dispersion is expected to be minimal.
Furthermore, for the wavelength of around 1 μm in GaAs
that we are considering here, including the correction for
material dispersion [50] should have a negligible effect on the
calculation of the DCP.
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